
Chapter 13

Data Structures for Integers

In this chapter, we return to the problem of implementing an SSet. The
difference now is that we assume the elements stored in the SSet are w-bit
integers. That is, we want to implement add(x), remove(x), and find(x)
where x ∈ {0, . . . ,2w−1}. It is not too hard to think of plenty of applications
where the data—or at least the key that we use for sorting the data—is an
integer.

We will discuss three data structures, each building on the ideas of
the previous. The first structure, the BinaryTrie performs all three SSet
operations in O(w) time. This is not very impressive, since any subset of
{0, . . . ,2w − 1} has size n ≤ 2w, so that logn ≤ w. All the other SSet imple-
mentations discussed in this book perform all operations in O(logn) time
so they are all at least as fast as a BinaryTrie.

The second structure, the XFastTrie, speeds up the search in a Bina-
ryTrie by using hashing. With this speedup, the find(x) operation runs
in O(logw) time. However, add(x) and remove(x) operations in an XFast-
Trie still take O(w) time and the space used by an XFastTrie is O(n · w).

The third data structure, the YFastTrie, uses an XFastTrie to store
only a sample of roughly one out of every w elements and stores the re-
maining elements in a standard SSet structure. This trick reduces the
running time of add(x) and remove(x) to O(logw) and decreases the space
to O(n).

The implementations used as examples in this chapter can store any
type of data, as long as an integer can be associated with it. In the code
samples, the variable ix is always the integer value associated with x, and

265

§13.1 Data Structures for Integers

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0? ? ? 1? ? ?

? ? ? ?

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

Figure 13.1: The integers stored in a binary trie are encoded as root-to-leaf paths.

the method in.intValue(x) converts x to its associated integer. In the text,
however, we will simply treat x as if it is an integer.

13.1 BinaryTrie: A digital search tree

A BinaryTrie encodes a set of w bit integers in a binary tree. All leaves in
the tree have depth w and each integer is encoded as a root-to-leaf path.
The path for the integer x turns left at level i if the ith most significant
bit of x is a 0 and turns right if it is a 1. Figure 13.1 shows an example
for the case w = 4, in which the trie stores the integers 3(0011), 9(1001),
12(1100), and 13(1101).

Because the search path for a value x depends on the bits of x, it
will be helpful to name the children of a node, u, u.child[0] (left) and
u.child[1] (right). These child pointers will actually serve double-duty.
Since the leaves in a binary trie have no children, the pointers are used to
string the leaves together into a doubly-linked list. For a leaf in the bi-
nary trie u.child[0] (prev) is the node that comes before u in the list and
u.child[1] (next) is the node that follows u in the list. A special node,
dummy, is used both before the first node and after the last node in the list
(see Section 3.2).

Each node, u, also contains an additional pointer u.jump. If u’s left

266

BinaryTrie: A digital search tree §13.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0? ? ? 1? ? ?

? ? ? ?

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

Figure 13.2: A BinaryTrie with jump pointers shown as curved dashed edges.

child is missing, then u.jump points to the smallest leaf in u’s subtree.
If u’s right child is missing, then u.jump points to the largest leaf in u’s
subtree. An example of a BinaryTrie, showing jump pointers and the
doubly-linked list at the leaves, is shown in Figure 13.2.

The find(x) operation in a BinaryTrie is fairly straightforward. We
try to follow the search path for x in the trie. If we reach a leaf, then we
have found x. If we reach a node u where we cannot proceed (because
u is missing a child), then we follow u.jump, which takes us either to the
smallest leaf larger than x or the largest leaf smaller than x. Which of
these two cases occurs depends on whether u is missing its left or right
child, respectively. In the former case (u is missing its left child), we have
found the node we want. In the latter case (u is missing its right child),
we can use the linked list to reach the node we want. Each of these cases
is illustrated in Figure 13.3.

BinaryTrie
T find(T x) {

int i, c = 0, ix = it.intValue(x);
Node u = r;
for (i = 0; i < w; i++) {

c = (ix >>> w-i-1) & 1;
if (u.child[c] == null) break;
u = u.child[c];

}

267

§13.1 Data Structures for Integers

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0? ? ? 1? ? ?

? ? ? ?

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

find(5) find(8)

Figure 13.3: The paths followed by find(5) and find(8).

if (i == w) return u.x; // found it
u = (c == 0) ? u.jump : u.jump.child[next];
return u == dummy ? null : u.x;

}

The running-time of the find(x) method is dominated by the time it
takes to follow a root-to-leaf path, so it runs in O(w) time.

The add(x) operation in a BinaryTrie is also fairly straightforward,
but has a lot of work to do:

1. It follows the search path for x until reaching a node u where it can
no longer proceed.

2. It creates the remainder of the search path from u to a leaf that
contains x.

3. It adds the node, u′ , containing x to the linked list of leaves (it has
access to the predecessor, pred, of u′ in the linked list from the jump
pointer of the last node, u, encountered during step 1.)

4. It walks back up the search path for x adjusting jump pointers at the
nodes whose jump pointer should now point to x.

An addition is illustrated in Figure 13.4.

268

BinaryTrie: A digital search tree §13.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0? ? ? 1? ? ?

? ? ? ?

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

Figure 13.4: Adding the values 2 and 15 to the BinaryTrie in Figure 13.2.

BinaryTrie
boolean add(T x) {

int i, c = 0, ix = it.intValue(x);
Node u = r;
// 1 - search for ix until falling out of the trie
for (i = 0; i < w; i++) {

c = (ix >>> w-i-1) & 1;
if (u.child[c] == null) break;
u = u.child[c];

}
if (i == w) return false; // already contains x - abort
Node pred = (c == right) ? u.jump : u.jump.child[0];
u.jump = null; // u will have two children shortly
// 2 - add path to ix
for (; i < w; i++) {

c = (ix >>> w-i-1) & 1;
u.child[c] = newNode();
u.child[c].parent = u;
u = u.child[c];

}
u.x = x;
// 3 - add u to linked list
u.child[prev] = pred;
u.child[next] = pred.child[next];

269

§13.1 Data Structures for Integers

u.child[prev].child[next] = u;
u.child[next].child[prev] = u;
// 4 - walk back up, updating jump pointers
Node v = u.parent;
while (v != null) {

if ((v.child[left] == null
&& (v.jump == null || it.intValue(v.jump.x) > ix))

|| (v.child[right] == null
&& (v.jump == null || it.intValue(v.jump.x) < ix)))

v.jump = u;
v = v.parent;

}
n++;
return true;

}

This method performs one walk down the search path for x and one
walk back up. Each step of these walks takes constant time, so the add(x)
method runs in O(w) time.

The remove(x) operation undoes the work of add(x). Like add(x), it
has a lot of work to do:

1. It follows the search path for x until reaching the leaf, u, containing
x.

2. It removes u from the doubly-linked list.

3. It deletes u and then walks back up the search path for x deleting
nodes until reaching a node v that has a child that is not on the
search path for x.

4. It walks upwards from v to the root updating any jump pointers that
point to u.

A removal is illustrated in Figure 13.5.

BinaryTrie
boolean remove(T x) {

// 1 - find leaf, u, containing x
int i = 0, c, ix = it.intValue(x);
Node u = r;

270

BinaryTrie: A digital search tree §13.1

10

10??

9

100?

0 1 2 3 4 5 6 7 8 11 12 13 14 15

0? ? ? 1? ? ?

? ? ? ?

00?? 01?? 11??

000? 001? 010? 011? 101? 110? 111?

Figure 13.5: Removing the value 9 from the BinaryTrie in Figure 13.2.

for (i = 0; i < w; i++) {
c = (ix >>> w-i-1) & 1;
if (u.child[c] == null) return false;
u = u.child[c];

}
// 2 - remove u from linked list
u.child[prev].child[next] = u.child[next];
u.child[next].child[prev] = u.child[prev];
Node v = u;
// 3 - delete nodes on path to u
for (i = w-1; i >= 0; i--) {

c = (ix >>> w-i-1) & 1;
v = v.parent;
v.child[c] = null;
if (v.child[1-c] != null) break;

}
// 4 - update jump pointers
v.jump = u;
for (; i >= 0; i--) {

c = (ix >>> w-i-1) & 1;
if (v.jump == u)
v.jump = u.child[1-c];

v = v.parent;
}
n--;

271

§13.2 Data Structures for Integers

return true;
}

Theorem 13.1. A BinaryTrie implements the SSet interface for w-bit inte-
gers. A BinaryTrie supports the operations add(x), remove(x), and find(x)
in O(w) time per operation. The space used by a BinaryTrie that stores n
values is O(n · w).

13.2 XFastTrie: Searching in Doubly-Logarithmic Time

The performance of the BinaryTrie structure is not very impressive. The
number of elements, n, stored in the structure is at most 2w, so logn ≤ w.
In other words, any of the comparison-based SSet structures described
in other parts of this book are at least as efficient as a BinaryTrie, and
are not restricted to only storing integers.

Next we describe the XFastTrie, which is just a BinaryTrie with w+ 1
hash tables—one for each level of the trie. These hash tables are used to
speed up the find(x) operation to O(logw) time. Recall that the find(x)
operation in a BinaryTrie is almost complete once we reach a node, u,
where the search path for x would like to proceed to u.right (or u.left)
but u has no right (respectively, left) child. At this point, the search uses
u.jump to jump to a leaf, v, of the BinaryTrie and either return v or its
successor in the linked list of leaves. An XFastTrie speeds up the search
process by using binary search on the levels of the trie to locate the node
u.

To use binary search, we need a way to determine if the node u we
are looking for is above a particular level, i, of if u is at or below level
i. This information is given by the highest-order i bits in the binary
representation of x; these bits determine the search path that x takes from
the root to level i. For an example, refer to Figure 13.6; in this figure the
last node, u, on search path for 14 (whose binary representation is 1110)
is the node labelled 11?? at level 2 because there is no node labelled 111?
at level 3. Thus, we can label each node at level i with an i-bit integer.
Then, the node u we are searching for would be at or below level i if and
only if there is a node at level i whose label matches the highest-order i

272

XFastTrie: Searching in Doubly-Logarithmic Time §13.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0? ? ? 1? ? ?

? ? ? ?

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0

1

2

3

4

1

1

1

Figure 13.6: Since there is no node labelled 111?, the search path for 14 (1110)
ends at the node labelled 11?? .

bits of x.

In an XFastTrie, we store, for each i ∈ {0, . . . ,w}, all the nodes at level
i in a USet, t[i], that is implemented as a hash table (Chapter 5). Using
this USet allows us to check in constant expected time if there is a node
at level i whose label matches the highest-order i bits of x. In fact, we
can even find this node using t[i].find(x>>>(w− i))

The hash tables t[0], . . . ,t[w] allow us to use binary search to find u.
Initially, we know that u is at some level i with 0 ≤ i < w+1. We therefore
initialize l = 0 and h = w + 1 and repeatedly look at the hash table t[i],
where i = b(l+ h)/2c. If t[i] contains a node whose label matches x’s
highest-order i bits then we set l = i (u is at or below level i); otherwise
we set h = i (u is above level i). This process terminates when h− l ≤ 1,
in which case we determine that u is at level l. We then complete the
find(x) operation using u.jump and the doubly-linked list of leaves.

XFastTrie
T find(T x) {

int l = 0, h = w+1, ix = it.intValue(x);
Node v, u = r, q = newNode();
while (h-l > 1) {

int i = (l+h)/2;
q.prefix = ix >>> w-i;

273

§13.2 Data Structures for Integers

if ((v = t[i].find(q)) == null) {
h = i;

} else {
u = v;
l = i;

}
}
if (l == w) return u.x;
Node pred = (((ix >>> w-l-1) & 1) == 1)

? u.jump : u.jump.child[0];
return (pred.child[next] == dummy)

? null : pred.child[next].x;
}

Each iteration of the while loop in the above method decreases h− l
by roughly a factor of two, so this loop finds u after O(logw) iterations.
Each iteration performs a constant amount of work and one find(x) op-
eration in a USet, which takes a constant expected amount of time. The
remaining work takes only constant time, so the find(x) method in an
XFastTrie takes only O(logw) expected time.

The add(x) and remove(x) methods for an XFastTrie are almost iden-
tical to the same methods in a BinaryTrie. The only modifications are
for managing the hash tables t[0],. . . ,t[w]. During the add(x) operation,
when a new node is created at level i, this node is added to t[i]. During
a remove(x) operation, when a node is removed form level i, this node
is removed from t[i]. Since adding and removing from a hash table take
constant expected time, this does not increase the running times of add(x)
and remove(x) by more than a constant factor. We omit a code listing for
add(x) and remove(x) since the code is almost identical to the (long) code
listing already provided for the same methods in a BinaryTrie.

The following theorem summarizes the performance of an XFastTrie:

Theorem 13.2. An XFastTrie implements the SSet interface for w-bit inte-
gers. An XFastTrie supports the operations

• add(x) and remove(x) in O(w) expected time per operation and

• find(x) in O(logw) expected time per operation.

The space used by an XFastTrie that stores n values is O(n · w).

274

YFastTrie: A Doubly-Logarithmic Time SSet §13.3

13.3 YFastTrie: A Doubly-Logarithmic Time SSet

The XFastTrie is a vast—even exponential—improvement over the Bi-
naryTrie in terms of query time, but the add(x) and remove(x) operations
are still not terribly fast. Furthermore, the space usage, O(n · w), is higher
than the other SSet implementations described in this book, which all
use O(n) space. These two problems are related; if n add(x) operations
build a structure of size n · w, then the add(x) operation requires at least
on the order of w time (and space) per operation.

The YFastTrie, discussed next, simultaneously improves the space
and speed of XFastTries. A YFastTrie uses an XFastTrie, xft, but only
storesO(n/w) values in xft. In this way, the total space used by xft is only
O(n). Furthermore, only one out of every w add(x) or remove(x) operations
in the YFastTrie results in an add(x) or remove(x) operation in xft. By
doing this, the average cost incurred by calls to xft’s add(x) and remove(x)
operations is only constant.

The obvious question becomes: If xft only stores n/w elements, where
do the remaining n(1 − 1/w) elements go? These elements move into sec-
ondary structures, in this case an extended version of treaps (Section 7.2).
There are roughly n/w of these secondary structures so, on average, each
of them stores O(w) items. Treaps support logarithmic time SSet opera-
tions, so the operations on these treaps will run in O(logw) time, as re-
quired.

More concretely, a YFastTrie contains an XFastTrie, xft, that con-
tains a random sample of the data, where each element appears in the
sample independently with probability 1/w. For convenience, the value
2w − 1, is always contained in xft. Let x0 < x1 < · · · < xk−1 denote the
elements stored in xft. Associated with each element, xi , is a treap, ti ,
that stores all values in the range xi−1 + 1, . . . ,xi . This is illustrated in
Figure 13.7.

The find(x) operation in a YFastTrie is fairly easy. We search for x in
xft and find some value xi associated with the treap ti . We then use the
treap find(x) method on ti to answer the query. The entire method is a
one-liner:

275

§13.3 Data Structures for Integers

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0? ? ? 1? ? ?

? ? ? ?

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0,1,3 4,5,8,9 10,11,13

Figure 13.7: A YFastTrie containing the values 0, 1, 3, 4, 6, 8, 9, 10, 11, and 13.

YFastTrie
T find(T x) {

return xft.find(new Pair<T>(it.intValue(x))).t.find(x);
}

The first find(x) operation (on xft) takes O(logw) time. The second
find(x) operation (on a treap) takes O(logr) time, where r is the size of
the treap. Later in this section, we will show that the expected size of the
treap is O(w) so that this operation takes O(logw) time.1

Adding an element to a YFastTrie is also fairly simple—most of the
time. The add(x) method calls xft.find(x) to locate the treap, t, into
which x should be inserted. It then calls t.add(x) to add x to t. At this
point, it tosses a biased coin that comes up as heads with probability 1/w
and as tails with probability 1 − 1/w. If this coin comes up heads, then x
will be added to xft.

This is where things get a little more complicated. When x is added
to xft, the treap t needs to be split into two treaps, t1 and t′ . The treap
t1 contains all the values less than or equal to x; t′ is the original treap,

1This is an application of Jensen’s Inequality: If E[r] = w, then E[logr] ≤ logw.

276

YFastTrie: A Doubly-Logarithmic Time SSet §13.3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0? ? ? 1? ? ?

? ? ? ?

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0,1,2,3 4,5,8,9 10,11,134,5,6 8,9

Figure 13.8: Adding the values 2 and 6 to a YFastTrie. The coin toss for 6 came
up heads, so 6 was added to xft and the treap containing 4,5,6,8,9 was split.

t, with the elements of t1 removed. Once this is done, we add the pair
(x,t1) to xft. Figure 13.8 shows an example.

YFastTrie
boolean add(T x) {

int ix = it.intValue(x);
STreap<T> t = xft.find(new Pair<T>(ix)).t;
if (t.add(x)) {

n++;
if (rand.nextInt(w) == 0) {
STreap<T> t1 = t.split(x);
xft.add(new Pair<T>(ix, t1));

}
return true;

}
return false;

}

Adding x to t takes O(logw) time. Exercise 7.12 shows that splitting
t into t1 and t′ can also be done in O(logw) expected time. Adding the

277

§13.3 Data Structures for Integers

pair (x,t1) to xft takes O(w) time, but only happens with probability 1/w.
Therefore, the expected running time of the add(x) operation is

O(logw) +
1
w
O(w) =O(logw) .

The remove(x) method undoes the work performed by add(x). We use
xft to find the leaf, u, in xft that contains the answer to xft.find(x).
From u, we get the treap, t, containing x and remove x from t. If x was
also stored in xft (and x is not equal to 2w−1) then we remove x from xft
and add the elements from x’s treap to the treap, t2, that is stored by u’s
successor in the linked list. This is illustrated in Figure 13.9.

YFastTrie
boolean remove(T x) {

int ix = it.intValue(x);
Node<T> u = xft.findNode(ix);
boolean ret = u.x.t.remove(x);
if (ret) n--;
if (u.x.x == ix && ix != 0xffffffff) {

STreap<T> t2 = u.child[1].x.t;
t2.absorb(u.x.t);
xft.remove(u.x);

}
return ret;

}

Finding the node u in xft takes O(logw) expected time. Removing
x from t takes O(logw) expected time. Again, Exercise 7.12 shows that
merging all the elements of t into t2 can be done in O(logw) time. If
necessary, removing x from xft takes O(w) time, but x is only contained
in xft with probability 1/w. Therefore, the expected time to remove an
element from a YFastTrie is O(logw).

Earlier in the discussion, we delayed arguing about the sizes of treaps
in this structure until later. Before finishing this chapter, we prove the
result we need.

Lemma 13.1. Let x be an integer stored in a YFastTrie and let nx denote the
number of elements in the treap, t, that contains x. Then E[nx] ≤ 2w− 1.

278

YFastTrie: A Doubly-Logarithmic Time SSet §13.3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0? ? ? 1? ? ?

? ? ? ?

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0,1,2,3 8,10,11,134,5,6 8,9

Figure 13.9: Removing the values 1 and 9 from a YFastTrie in Figure 13.8.

Proof. Refer to Figure 13.10. Let x1 < x2 < · · · < xi = x < xi+1 < · · · < xn
denote the elements stored in the YFastTrie. The treap t contains some
elements greater than or equal to x. These are xi ,xi+1, . . . ,xi+j−1, where
xi+j−1 is the only one of these elements in which the biased coin toss per-
formed in the add(x) method turned up as heads. In other words, E[j] is
equal to the expected number of biased coin tosses required to obtain the
first heads.2 Each coin toss is independent and turns up as heads with
probability 1/w, so E[j] ≤ w. (See Lemma 4.2 for an analysis of this for the
case w = 2.)

Similarly, the elements of t smaller than x are xi−1, . . . ,xi−k where all
these k coin tosses turn up as tails and the coin toss for xi−k−1 turns up as
heads. Therefore, E[k] ≤ w − 1, since this is the same coin tossing exper-
iment considered in the preceding paragraph, but one in which the last
toss is not counted. In summary, nx = j + k, so

E[nx] = E[j + k] = E[j] + E[k] ≤ 2w− 1 .

2This analysis ignores the fact that j never exceeds n− i+1. However, this only decreases
E[j], so the upper bound still holds.

279

§13.4 Data Structures for Integers

xi = x xi+1 xi+2 xi+j−2 xi+j−1. . .

T T T T H

xi−1

T

xi−2

T

xi−k+1

T

xi−k

T

xi−k−1

H

. . .

.

︷ ︸︸ ︷
elements in treap, t, containing x

︸ ︷︷ ︸︸ ︷︷ ︸
k j

Figure 13.10: The number of elements in the treap t containing x is determined
by two coin tossing experiments.

Lemma 13.1 was the last piece in the proof of the following theorem,
which summarizes the performance of the YFastTrie:

Theorem 13.3. A YFastTrie implements the SSet interface for w-bit inte-
gers. A YFastTrie supports the operations add(x), remove(x), and find(x)
in O(logw) expected time per operation. The space used by a YFastTrie that
stores n values is O(n+ w).

The w term in the space requirement comes from the fact that xft al-
ways stores the value 2w − 1. The implementation could be modified (at
the expense of adding some extra cases to the code) so that it is unneces-
sary to store this value. In this case, the space requirement in the theorem
becomes O(n).

13.4 Discussion and Exercises

The first data structure to provide O(logw) time add(x), remove(x), and
find(x) operations was proposed by van Emde Boas and has since be-
come known as the van Emde Boas (or stratified) tree [74]. The original
van Emde Boas structure had size 2w, making it impractical for large in-
tegers.

The XFastTrie and YFastTrie data structures were discovered by
Willard [77]. The XFastTrie structure is closely related to van Emde Boas
trees; for instance, the hash tables in an XFastTrie replace arrays in a
van Emde Boas tree. That is, instead of storing the hash table t[i], a
van Emde Boas tree stores an array of length 2i.

Another structure for storing integers is Fredman and Willard’s fusion

280

Discussion and Exercises §13.4

trees [32]. This structure can store n w-bit integers in O(n) space so that
the find(x) operation runs inO((logn)/(logw)) time. By using a fusion tree
when logw >

√
logn and a YFastTrie when logw ≤ √

logn, one obtains an
O(n) space data structure that can implement the find(x) operation in
O(

√
logn) time. Recent lower-bound results of Pǎtraşcu and Thorup [59]

show that these results are more or less optimal, at least for structures
that use only O(n) space.

Exercise 13.1. Design and implement a simplified version of a Binary-
Trie that does not have a linked list or jump pointers, but for which
find(x)

still runs in O(w) time.

Exercise 13.2. Design and implement a simplified implementation of an
XFastTrie that doesn’t use a binary trie at all. Instead, your implementa-
tion should store everything in a doubly-linked list and w+ 1 hash tables.

Exercise 13.3. We can think of a BinaryTrie as a structure that stores
bit strings of length w in such a way that each bitstring is represented as a
root to leaf path. Extend this idea into an SSet implementation that stores
variable-length strings and implements add(s), remove(s), and find(s) in
time proporitional to the length of s.
Hint: Each node in your data structure should store a hash table that is
indexed by character values.

Exercise 13.4. For an integer x ∈ {0, . . .2w−1}, let d(x) denote the difference
between x and the value returned by find(x) [if find(x) returns null,
then define d(x) as 2w]. For example, if find(23) returns 43, then d(23) =
20.

1. Design and implement a modified version of the find(x) operation
in an XFastTrie that runs in O(1 + logd(x)) expected time. Hint:
The hash table t[w] contains all the values, x, such that d(x) = 0, so
that would be a good place to start.

2. Design and implement a modified version of the find(x) operation
in an XFastTrie that runs in O(1 + loglogd(x)) expected time.

281

